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About this session

• This is the sequel to “Introducing the Ceylon Project”

• I’m not going to talk about why we’re doing a new language

• I’m not going to talk about the basic syntax of the language

• Instead, I’m going to discuss the Ceylon type system: inheritance, generics, 
and operators

• Of course, I’m not going to have time to cover everything that’s interesting
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Principles behind the type system

• There should be no “special” types i.e. no primitive or compound types that 
can’t be expressed within the type system itself - “everything is an object”

• There shouldn’t be any special functionality for built-in types that can’t apply 
equally to user-written classes, e.g., operators, numeric promotions

• Everything should still work “how you expect” from Java / C / etc

• Numeric types should still behave how they behave in other languages

• sequences should behave like arrays

• The overall complexity of the type system must not be much greater

• This means sacrificing some things that are occasionally nice: method 
overloading, wildcard types

• Great language design means leaving things out!
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Closure and block structure

Person person {
    Name name { 
        return Name(“Gavin”, “King”); 
    }
    return Person(name);
}

This is an attribute ...
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Closure and block structure

Person person(String firstName, String lastName) {
    Name name { 
        return Name(firstName, lastName); 
    }
    return Person(name);
}

... this is a method ...
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Closure and block structure

Person(String firstName, String lastName) {
    Name name { 
        return Name(firstName, lastName); 
    }
}

... and this is a class.

Notice that they are 
not very different!
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Closure and block structure

• The language has a recursive structure

• generally, constructs which are syntactically valid in the body of a class are 
also syntactically valid in the body of an attribute or method

• a declaration contained inside a block always receives a closure of other 
members of the block 

• We think of a class as a function which returns a closure of its members to 
the caller

• of course, a big difference is that a class defines a type - class members 
can be shared

• We use the terms “function” and “method” almost interchangeably

• within the block that contains a method declaration, the method appears 
to be a function (you can call it without specifying a receiver)

• outside of the block, a shared method appears to be a member and must 
be qualified by the receiving object
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Operator polymorphism

• We think that true operator overloading is harmful

• the temptation to overload a common symbol like + to mean something 
that has nothing to do with addition is overwhelming for most library 
authors

• once you are using several libraries, it’s really hard to tell what any 
particular occurrence of + means (the problem is worse if you also have 
type inference)

• people end up defining operators like @:+> resulting in intriguing, 
executable ASCII art, not plain, readable code

• On the other hand, it’s really annoying that we can’t define + for Complex 
numbers in Java, or define == to mean equals()

•  The solution: operator polymorphism

• An operator is just a shortcut for a method of a built-in type

• > means Comparable.largerThan()

• + means Numeric.plus()
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Operator polymorphism

shared class Complex(Float re, Float im = 0.0) 
        satisfies Numeric<Complex> {
    ...
    shared actual Complex plus(Complex that) {
        return Complex(this.re+that.re, this.im+that.im);
    }
    ...
}

Complex x = Complex(1.0);
Complex y = Complex(0.0, 1.0);
Complex z = x + y;    //means x.plus(y)

This solution is a “middle way” - less 
powerful, but simpler and safer than 
true operator overloading.
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Inheritance model

• There are only three kinds of type: classes, interfaces, and type parameters

• There are no special annotation or enum types

• There are four kinds of relationship between classes and interfaces

• A class extends another class

• A class or interface satisfies zero or more interfaces

• A class or interface may have an enumerated list of its subtypes
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Inheritance model

shared class Character(Natural utf16) 
        extends Object()
        satisfies Ordinal & Comparable<Character> {
    ...
}

The syntax X&Y represents the intersection 
of two types. The syntax X|Y represents the 
union of two types. 

Like in Java, a class may extend another 
class, and implement multiple interfaces.
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Interfaces and mixin inheritance

shared interface Comparable<in T> {
    
    shared formal Comparison compare(T other);
    
    shared Boolean largerThan(T other) {
        return compare(other)==larger;
    }
    
    shared Boolean smallerThan(T other) {
        return compare(other)==smaller;
    }
    ...
    
}

An interface may not declare initialization 
logic, which is the cause of ordering and 
diamond inheritance problems.

An interface may declare both formal and 
concrete members.
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Refinement (overriding)

shared class Character(Natural utf16) 
        extends Object()
        satisfies Ordinal & Comparable<Character> {

    Natural nat = utf16;

    shared actual Comparison compare(T that) {
        return this.nat<=>that.nat;
    }

    ...
}

The actual annotation specifies that a member 
refines a supertype member.

The <=> operator is called “compare”. It’s 
just a shortcut for the method compare() 
of Comparable.
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“Switching” by type

• Type narrowing is often frowned upon in object-oriented programming

• especially frowned upon is the practice of writing a big list of cases to 
handle the various subtypes of a type (addition of a new subtype breaks 
the case list)

• usually, polymorphism is the right way to do things - each subtype 
overrides an abstract method

• however, there remain some cases where a list of cases is the right 
approach - for example, if the code that handles the various cases is in a 
different module to the code that defines the cases

• Unfortunately, Java exacerbates the problem

• the combination of instanceof followed by a typecast is verbose and 
error prone (the compiler cannot validate typesafety)

• the compiler does not inform us when addition of a new subtype breaks 
the list of cases
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Type narrowing

abstract class Node<T>(String name) { ... }

class Leaf<T>(String name, T value) 
        extends Node<T>(name) { ... }

class Branch<T>(String name, Node<T> left, Node<T> right) 
        extends Node<T>(name) { ... }

Many classes and interfaces have multiple subtypes.

But Ceylon has no C-style typecasts.
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Type narrowing

Node<String> node = ... ;
switch (node)
case (is Leaf<String>) { 
    leaf(node.value); 
}
case (is Branch<String>) { 
    branch(node.left, node.right); 
}
else {
    somethingElse(node);
}

The compiler forces the switch statement to 
contain an else clause to handle other subtypes.

The case (is ... ) and if (is ... ) constructs 
perform a type check and type cast in one step, thus 
eliminating the possibility of ClassCastExceptions.

node is a Leaf<String>

node is a Branch<String>

All we know about node 
is that it is a Node<String>
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Enumerated subtypes

abstract class Node<T>(String name) 
        of Branch<T> | Leaf<T> { ... }

class Leaf<T>(String name, T value) 
        extends Node<T>(name) { ... }

class Branch<T>(String name, Node<T> left, Node<T> right) 
        extends Node<T>(name) { ... }

A class or interface may specify an explicitly 
enumerated list of subtypes.

The functional programming community calls 
this an algebraic datatype.
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Enumerated subtypes

Node<String> node = ... ;
switch (node)
case (is Leaf<String>) { 
    leaf(node.value); 
}
case (is Branch<String>) { 
    branch(node.left, node.right); 
}

The compiler validates that switch statements 
contain either an exhaustive list of possible subtypes. 
or an else clause.
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Typesafe enumerations

shared object true extends Boolean() {} 
shared object false extends Boolean() {}

abstract class Boolean() 
        of true | false
        extends Case() { ... }

A toplevel object declaration defines a type 
with a single instance.

A class with an enumerated list of 
instances is similar to a Java enum.
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Typesafe enumerations

switch (x>0)
case (true) { ... }
case (false) { ... }

The compiler validates that switch statements 
contain an exhaustive list of instances. (Or an 
else clause.)

If you add or remove an enumerated instance of a 
type, the compiler will force you to fix every 
switch statement of that type.
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Parametric polymorphism (generics)

• Java’s system of parametric polymorphism is very powerful, but also very 
complex

• Raw types are a gaping hole in typesafety

• Wildcard types are an extremely powerful solution to the problem of 
covariance/contravariance, but extremely difficult to understand, and 
syntactically heavyweight

• Type erasure doesn’t mix well with overloading

• There are many problems where we need to know the runtime value of a 
type parameter

• The solution:

• eliminate raw and wildcard types

• eliminate overloading 

• reify type arguments

• support type parameter variance annotations
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Reified generics

void print<E>(E[] sequence) {
    if (is String[] sequence) {
        for (String s in sequence) { 
            writeLine(s); 
        }
    }
    else {
        Formatter f = getFormatter(E);
        for (E e in sequence) { 
            writeLine(f.format(e)); 
        }
    }
} It’s possible to test the argument of a type 

parameter at runtime.

Like in Java, a class or method may have type 
parameters, which may have constraints.

The expression E here is 
similar to E.class in Java.
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Variance

interface WeakReference<T> {
    shared formal T? get();
    shared formal void set(T t);
}

WeakReference<String> hs = ... ;
WeakReference<Object> ho = hs;
Object? o = ho.get();
ho.set(1);

Is WeakReference<String> assignable to WeakReference<Object>?

get() is OK ... a String is an Object

set() is not OK ... an Object is not a String
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Variance

interface WeakReferenceGetter<out T> { 
    shared formal T? get(); 
}

interface WeakReferenceSetter<in T> { 
    shared formal void set(T t); 
}

A type may be covariant or contravariant in 
its type parameter. (Respectively in or out.)
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Variance

interface WeakReferenceGetter<out T> { 
    shared formal T? get(T t); 
}

interface WeakReferenceSetter<in T> { 
    shared formal T set(T t); 
}

The compiler validates member signatures to check 
that the type really does respect the declared variance.

Compile error: not covariant

Compile error: not contravariant
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Variance

WeakReferenceGetter<String> ps = ... ;
WeakReferenceGetter<Object> po = ps;

WeakReferenceSetter<Object> co = .... ;
WeakReferenceSetter<String> cs = co;

Trust me: this is way easier to understand 
than wildcard types in Java!

Variance affects assignability.

WeakReferenceGetter<Object> po = ... ;
WeakReferenceGetter<String> ps = po;

WeakReferenceSetter<String> cs = .... ;
WeakReferenceSetter<Object> co = cs;

Compile error: not assignable

Compile error: not assignable
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Collections and variance

• An interface like List<T> should be covariant in T since we almost always 
want a List<String> to be a List<Object>

• Therefore, we need to split operations which mutate the list to a separate 
interface OpenList<T>

•  It turns out that this is the right thing to do anyway - a major problem with 
using Java collections in APIs is that it is never clear what an operation like 
add() will actually do:

• mutate the object that provided the List?

• mutate the client’s copy without mutating the original object?

• throw an unchecked exception at runtime since the object that provided 
the list called Collections.immutableList()?
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Generic type constraints

• There are four kinds of generic type constraint:

• upper bounds (the most common type)

• lower bounds (the least common type)

• initialization parameter specifications

• enumerated type constraints

• The last two don’t exist in Java
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Generic type constraints

shared class TreeSet<out T>(T... elements) 
        satisfies Set<T>
        given T satisfies Comparable<T> {
    ...
}

An upper bound specifies that the type argument 
must be a subtype of the given type.

Note that the syntax for declaring constraints on 
a type parameter looks just like the syntax for 
declaring a class or interface.
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Generic type constraints

shared S join<S,E>(S... sequences)
        given S(E... es) satisfies Sequence<E> {
    return S(JoinedSequence(sequences));
}

Then the type may be instantiated within the 
declaration. This is possible because Ceylon has 
reified generics.

An initialization parameter specification specifies that the type 
argument must be a class with the given parameter types.
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Generic type constraints

void print<T>(T printable) 
        given T of String | Named {
    String string;
    switch (printable)
    case (is String) {
        string = printable;
    }
    case (is Named) {
        string = printable.name;
    }
    writeLine(string);
}

An enumerated type constraint specifies that the type 
argument must be one of the enumerated types.

This is similar to an overloaded 
method in Java.

T is essentially a union type.
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What next?

• We need help implementing the compiler and designing the SDK.

• This is a great time to make an impact!

Questions?
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