
The Ceylon Type System

Gavin King
Red Hat
in.relation.to/Bloggers/Gavin

Wednesday, April 13, 2011

About this session

• This is the sequel to “Introducing the Ceylon Project”

• I’m not going to talk about why we’re doing a new language

• I’m not going to talk about the basic syntax of the language

• Instead, I’m going to discuss the Ceylon type system: inheritance, generics,
and operators

• Of course, I’m not going to have time to cover everything that’s interesting

Wednesday, April 13, 2011

Principles behind the type system

• There should be no “special” types i.e. no primitive or compound types that
can’t be expressed within the type system itself - “everything is an object”

• There shouldn’t be any special functionality for built-in types that can’t apply
equally to user-written classes, e.g., operators, numeric promotions

• Everything should still work “how you expect” from Java / C / etc

• Numeric types should still behave how they behave in other languages

• sequences should behave like arrays

• The overall complexity of the type system must not be much greater

• This means sacrificing some things that are occasionally nice: method
overloading, wildcard types

• Great language design means leaving things out!

Wednesday, April 13, 2011

Closure and block structure

Person person {
 Name name {
 return Name(“Gavin”, “King”);
 }
 return Person(name);
}

This is an attribute ...

Wednesday, April 13, 2011

Closure and block structure

Person person(String firstName, String lastName) {
 Name name {
 return Name(firstName, lastName);
 }
 return Person(name);
}

... this is a method ...

Wednesday, April 13, 2011

Closure and block structure

Person(String firstName, String lastName) {
 Name name {
 return Name(firstName, lastName);
 }
}

... and this is a class.

Notice that they are
not very different!

Wednesday, April 13, 2011

Closure and block structure

• The language has a recursive structure

• generally, constructs which are syntactically valid in the body of a class are
also syntactically valid in the body of an attribute or method

• a declaration contained inside a block always receives a closure of other
members of the block

• We think of a class as a function which returns a closure of its members to
the caller

• of course, a big difference is that a class defines a type - class members
can be shared

• We use the terms “function” and “method” almost interchangeably

• within the block that contains a method declaration, the method appears
to be a function (you can call it without specifying a receiver)

• outside of the block, a shared method appears to be a member and must
be qualified by the receiving object

Wednesday, April 13, 2011

Operator polymorphism

• We think that true operator overloading is harmful

• the temptation to overload a common symbol like + to mean something
that has nothing to do with addition is overwhelming for most library
authors

• once you are using several libraries, it’s really hard to tell what any
particular occurrence of + means (the problem is worse if you also have
type inference)

• people end up defining operators like @:+> resulting in intriguing,
executable ASCII art, not plain, readable code

• On the other hand, it’s really annoying that we can’t define + for Complex
numbers in Java, or define == to mean equals()

• The solution: operator polymorphism

• An operator is just a shortcut for a method of a built-in type

• > means Comparable.largerThan()

• + means Numeric.plus()
Wednesday, April 13, 2011

Operator polymorphism

shared class Complex(Float re, Float im = 0.0)
 satisfies Numeric<Complex> {
 ...
 shared actual Complex plus(Complex that) {
 return Complex(this.re+that.re, this.im+that.im);
 }
 ...
}

Complex x = Complex(1.0);
Complex y = Complex(0.0, 1.0);
Complex z = x + y; //means x.plus(y)

This solution is a “middle way” - less
powerful, but simpler and safer than
true operator overloading.

Wednesday, April 13, 2011

Inheritance model

• There are only three kinds of type: classes, interfaces, and type parameters

• There are no special annotation or enum types

• There are four kinds of relationship between classes and interfaces

• A class extends another class

• A class or interface satisfies zero or more interfaces

• A class or interface may have an enumerated list of its subtypes

Wednesday, April 13, 2011

Inheritance model

shared class Character(Natural utf16)
 extends Object()
 satisfies Ordinal & Comparable<Character> {
 ...
}

The syntax X&Y represents the intersection
of two types. The syntax X|Y represents the
union of two types.

Like in Java, a class may extend another
class, and implement multiple interfaces.

Wednesday, April 13, 2011

Interfaces and mixin inheritance

shared interface Comparable<in T> {

 shared formal Comparison compare(T other);

 shared Boolean largerThan(T other) {
 return compare(other)==larger;
 }

 shared Boolean smallerThan(T other) {
 return compare(other)==smaller;
 }
 ...

}

An interface may not declare initialization
logic, which is the cause of ordering and
diamond inheritance problems.

An interface may declare both formal and
concrete members.

Wednesday, April 13, 2011

Refinement (overriding)

shared class Character(Natural utf16)
 extends Object()
 satisfies Ordinal & Comparable<Character> {

 Natural nat = utf16;

 shared actual Comparison compare(T that) {
 return this.nat<=>that.nat;
 }

 ...
}

The actual annotation specifies that a member
refines a supertype member.

The <=> operator is called “compare”. It’s
just a shortcut for the method compare()
of Comparable.

Wednesday, April 13, 2011

“Switching” by type

• Type narrowing is often frowned upon in object-oriented programming

• especially frowned upon is the practice of writing a big list of cases to
handle the various subtypes of a type (addition of a new subtype breaks
the case list)

• usually, polymorphism is the right way to do things - each subtype
overrides an abstract method

• however, there remain some cases where a list of cases is the right
approach - for example, if the code that handles the various cases is in a
different module to the code that defines the cases

• Unfortunately, Java exacerbates the problem

• the combination of instanceof followed by a typecast is verbose and
error prone (the compiler cannot validate typesafety)

• the compiler does not inform us when addition of a new subtype breaks
the list of cases

Wednesday, April 13, 2011

Type narrowing

abstract class Node<T>(String name) { ... }

class Leaf<T>(String name, T value)
 extends Node<T>(name) { ... }

class Branch<T>(String name, Node<T> left, Node<T> right)
 extends Node<T>(name) { ... }

Many classes and interfaces have multiple subtypes.

But Ceylon has no C-style typecasts.

Wednesday, April 13, 2011

Type narrowing

Node<String> node = ... ;
switch (node)
case (is Leaf<String>) {
 leaf(node.value);
}
case (is Branch<String>) {
 branch(node.left, node.right);
}
else {
 somethingElse(node);
}

The compiler forces the switch statement to
contain an else clause to handle other subtypes.

The case (is ...) and if (is ...) constructs
perform a type check and type cast in one step, thus
eliminating the possibility of ClassCastExceptions.

node is a Leaf<String>

node is a Branch<String>

All we know about node
is that it is a Node<String>

Wednesday, April 13, 2011

Enumerated subtypes

abstract class Node<T>(String name)
 of Branch<T> | Leaf<T> { ... }

class Leaf<T>(String name, T value)
 extends Node<T>(name) { ... }

class Branch<T>(String name, Node<T> left, Node<T> right)
 extends Node<T>(name) { ... }

A class or interface may specify an explicitly
enumerated list of subtypes.

The functional programming community calls
this an algebraic datatype.

Wednesday, April 13, 2011

Enumerated subtypes

Node<String> node = ... ;
switch (node)
case (is Leaf<String>) {
 leaf(node.value);
}
case (is Branch<String>) {
 branch(node.left, node.right);
}

The compiler validates that switch statements
contain either an exhaustive list of possible subtypes.
or an else clause.

Wednesday, April 13, 2011

Typesafe enumerations

shared object true extends Boolean() {}
shared object false extends Boolean() {}

abstract class Boolean()
 of true | false
 extends Case() { ... }

A toplevel object declaration defines a type
with a single instance.

A class with an enumerated list of
instances is similar to a Java enum.

Wednesday, April 13, 2011

Typesafe enumerations

switch (x>0)
case (true) { ... }
case (false) { ... }

The compiler validates that switch statements
contain an exhaustive list of instances. (Or an
else clause.)

If you add or remove an enumerated instance of a
type, the compiler will force you to fix every
switch statement of that type.

Wednesday, April 13, 2011

Parametric polymorphism (generics)

• Java’s system of parametric polymorphism is very powerful, but also very
complex

• Raw types are a gaping hole in typesafety

• Wildcard types are an extremely powerful solution to the problem of
covariance/contravariance, but extremely difficult to understand, and
syntactically heavyweight

• Type erasure doesn’t mix well with overloading

• There are many problems where we need to know the runtime value of a
type parameter

• The solution:

• eliminate raw and wildcard types

• eliminate overloading

• reify type arguments

• support type parameter variance annotations

Wednesday, April 13, 2011

Reified generics

void print<E>(E[] sequence) {
 if (is String[] sequence) {
 for (String s in sequence) {
 writeLine(s);
 }
 }
 else {
 Formatter f = getFormatter(E);
 for (E e in sequence) {
 writeLine(f.format(e));
 }
 }
} It’s possible to test the argument of a type

parameter at runtime.

Like in Java, a class or method may have type
parameters, which may have constraints.

The expression E here is
similar to E.class in Java.

Wednesday, April 13, 2011

Variance

interface WeakReference<T> {
 shared formal T? get();
 shared formal void set(T t);
}

WeakReference<String> hs = ... ;
WeakReference<Object> ho = hs;
Object? o = ho.get();
ho.set(1);

Is WeakReference<String> assignable to WeakReference<Object>?

get() is OK ... a String is an Object

set() is not OK ... an Object is not a String

Wednesday, April 13, 2011

Variance

interface WeakReferenceGetter<out T> {
 shared formal T? get();
}

interface WeakReferenceSetter<in T> {
 shared formal void set(T t);
}

A type may be covariant or contravariant in
its type parameter. (Respectively in or out.)

Wednesday, April 13, 2011

Variance

interface WeakReferenceGetter<out T> {
 shared formal T? get(T t);
}

interface WeakReferenceSetter<in T> {
 shared formal T set(T t);
}

The compiler validates member signatures to check
that the type really does respect the declared variance.

Compile error: not covariant

Compile error: not contravariant

Wednesday, April 13, 2011

Variance

WeakReferenceGetter<String> ps = ... ;
WeakReferenceGetter<Object> po = ps;

WeakReferenceSetter<Object> co = ;
WeakReferenceSetter<String> cs = co;

Trust me: this is way easier to understand
than wildcard types in Java!

Variance affects assignability.

WeakReferenceGetter<Object> po = ... ;
WeakReferenceGetter<String> ps = po;

WeakReferenceSetter<String> cs = ;
WeakReferenceSetter<Object> co = cs;

Compile error: not assignable

Compile error: not assignable

Wednesday, April 13, 2011

Collections and variance

• An interface like List<T> should be covariant in T since we almost always
want a List<String> to be a List<Object>

• Therefore, we need to split operations which mutate the list to a separate
interface OpenList<T>

• It turns out that this is the right thing to do anyway - a major problem with
using Java collections in APIs is that it is never clear what an operation like
add() will actually do:

• mutate the object that provided the List?

• mutate the client’s copy without mutating the original object?

• throw an unchecked exception at runtime since the object that provided
the list called Collections.immutableList()?

Wednesday, April 13, 2011

Generic type constraints

• There are four kinds of generic type constraint:

• upper bounds (the most common type)

• lower bounds (the least common type)

• initialization parameter specifications

• enumerated type constraints

• The last two don’t exist in Java

Wednesday, April 13, 2011

Generic type constraints

shared class TreeSet<out T>(T... elements)
 satisfies Set<T>
 given T satisfies Comparable<T> {
 ...
}

An upper bound specifies that the type argument
must be a subtype of the given type.

Note that the syntax for declaring constraints on
a type parameter looks just like the syntax for
declaring a class or interface.

Wednesday, April 13, 2011

Generic type constraints

shared S join<S,E>(S... sequences)
 given S(E... es) satisfies Sequence<E> {
 return S(JoinedSequence(sequences));
}

Then the type may be instantiated within the
declaration. This is possible because Ceylon has
reified generics.

An initialization parameter specification specifies that the type
argument must be a class with the given parameter types.

Wednesday, April 13, 2011

Generic type constraints

void print<T>(T printable)
 given T of String | Named {
 String string;
 switch (printable)
 case (is String) {
 string = printable;
 }
 case (is Named) {
 string = printable.name;
 }
 writeLine(string);
}

An enumerated type constraint specifies that the type
argument must be one of the enumerated types.

This is similar to an overloaded
method in Java.

T is essentially a union type.

Wednesday, April 13, 2011

What next?

• We need help implementing the compiler and designing the SDK.

• This is a great time to make an impact!

Questions?

Wednesday, April 13, 2011

